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The nonlinear interaction between the mean flow and a coherent disturbance in a two- 
dimensional turbulent mixing layer is addressed. Based on considerations from 
stability theory, previous experimental results, in particular the modification of the 
mean velocity profile, the peculiar growth of the forced shear-layer thickness and the 
spatial growth of the disturbance amplitude, are explained. A model that assumes a 
quasi-parallel mean flow having a self-similar mean velocity profile is developed. The 
model is capable of predicting the downstream evolution of turbulent mixing layers 
subjected to external excitations. 

1. Introduction 
Active external excitation of a shear layer at moderately high Reynolds numbers has 

a profound effect on the evolution of the mean flow as well as on the accompanying 
turbulent structure, as was shown by Oster & Wygnanski (1982), Ho & Huang (1982), 
Fiedler & Mensing (1985) and Roberts (1985) for the two-dimensional mixing layer; 
by Strange & Crighton (1983) and Cohen & Wygnanski (1987a, b) for the axisymmetric 
jet; and by Marasli, Champagne & Wygnanski (1991, 1992) for the turbulent wake. 

When a turbulent mixing layer is subjected to a two-dimensional periodic disturbance 
and the frequency of the excitation is an order of magnitude lower than the frequency 
corresponding to the most amplified waves near the trailing edge of the splitter plate, 
three distinct regions can be observed (Oster & Wygnanski 1982; Weisbrot & 
Wygnanski 1988). In the first region (region I), the initial rate of spread of the mixing 
layer nearly doubled in many instances, until the Strouhal number based on the 
excitation frequency and on a representative local width of the layer indicated that the 
mean flow became neutrally stable to the eternal excitation. By neutrally stable we 
mean a flow in which disturbances are neither amplified nor attenuated. In region I a 
typical Reynolds stress distribution is positive (Weisbrot & Wygnanski 1988). 

In the second region (region II), which extends over a distance corresponding 
approximately to one wavelength at the excitation frequency, the width of the shear 
layer decreases slightly whereas the concomitant Reynolds stresses reverse their sign. 
This suggests that the amplification or decay of the periodic disturbance leads to the 
divergence or contraction of the mean flow, respectively. In both regions the coherent 
velocity fluctuations are much more intense than the incoherent ones, thus the total 
Reynolds stresses (the sum of the coherent and incoherent ones) are mostly due to the 
coherent wavy disturbance. 

In region I11 the shear layer resumes its linear growth but at a much lower rate. Only 
in this region are there significant differences between the coherent and total Reynolds 
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stresses; in fact the two are of opposite sign. The Reynolds stresses associated with the 
coherent disturbance decay, whereas the incoherent turbulent stresses grow, extracting 
energy from the mean flow to feed the spreading of the mixing layer. Throughout the 
development of the shear layer the turbulent Reynolds stress is always positive, 
meaning that, on average, the direction of energy transfer is,from the mean to the 
incoherent fluctuations. Similar behaviour in the two-dimensional wake is discussed by 
Marasli et al. (1 992). 

The divergence of the mean flow is partially responsible for reducing the exponential 
amplification of a disturbance with increasing downstream distance. The linear theory 
applied to ihe slightly diverging mean flow (Bouthier 1972; Crighton & Gaster 1976; 
Gaster, Kit & Wygnanski 1985) assumes that the mean flow is prescribed and is 
decoupled from the Reynolds stresses generated by the excitation. Two small scales 
are necessary to theoretically explain this ; the first represents the amplitude of the 
disturbance, while the second represents the divergence of the mean flow. However, 
once a discrete periodic perturbation is superposed on the mean flow, these two scales 
are coupled and the nonlinear terms must be included. In fact, ignoring these terms 
results in an uncertainty related to the mean flow used in conjunction with this theory, 
i.e. should one use the unperturbed mean flow or the perturbed one? 

Although a lot of theoretical work has been done on the spatial and temporal 
evolution of a finite-amplitude wave in a turbulent mixing layer, a quantitative 
comparison between theoretical and experimental results is still lacking. Most of the 
previous theoretical work was concerned with the flow development in the vicinity of 
the neutral point, i.e. the point of marginal stability where the disturbance is neither 
amplified nor decayed. Consequently, in order to ‘smooth out’ the singularity arising 
at the critical layer, nonlinear and viscous effects are introduced and the method of 
matched asymptotic expansions is employed. The introduction of viscosity in the 
critical layer invalidates the parallel mean flow assumption ; therefore, Huerre (1 980) 
and Huerre & Scott (1980) introduced an artificial body force in order to keep the 
mean flow parallel, while Goldstein & Leib (1988) and Goldstein & Hultgren (1988) 
introduced a long viscous scale and matched the linear (weakly non-parallel) instability 
wave solution with the solution obtained in the nonlinear region. Hultgren (1992) 
recently extended the results of Goldstein & Hultgren to general shear-layer mean 
velocity profiles and obtained good agreement with transitional shear-layer ex- 
perimental data. 

The objective of the present investigation is to demonstrate that the nonlinear 
coupling between the excited instability wave and the turbulent mean flow is the main 
cause of shear-layer divergence, and that the nonlinear effects are not confined to a 
region of finite streamwise extent around the point of marginal stability, but are 
relevant well upstream of the neutral-point region where the instability wave is still 
being linearly amplified. An ad hoc method that assumes a quasi-parallel mean flow 
having a self-similar velocity profile, describing the spatial interactions between an 
excited, monochromatic wavy disturbance and the mean flow of a turbulent mixing 
layer upstream of the neutral point, is proposed in 92. The model calculations are 
compared with experimental results in 93. 

2. Theoretical considerations 
The proposed model is aimed at explaining the spatial interaction between an 

excited, monochromatic wavy disturbance and the mean flow of a turbulent mixing 
layer, upstream of the neutral point. It is assumed that in the linear regime where the 
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wave is amplified, the viscosity has virtually no effect and consequently the viscous 
terms are neglected. The disturbance growth rates, although small, are sufficiently high 
(compared to other shear flows such as wakes) for the artificial wave train to dominate 
the flow. Consequently, as was discussed in $1, the Reynolds stresses are almost 
entirely due to the coherent disturbance. 

In the present analysis a direct account of the complex interaction between the 
incoherent fluctuations and the mean flow is not attempted. Instead, based on the 
experimental observations mentioned above, the following algorithm is proposed. The 
downstream distance is divided into small equal intervals. The length of each interval 
is chosen to be much smaller than a characteristic lengthscale representing the 
divergence of the mean flow. At each interval the spreading of the mean flow is 
attributed only to the coherent Reynolds stress. The stability equations for each one 
of the intervals are derived and solved. From the solutions of these equations the local 
streamwise derivatives of the mean velocity and the amplitude of the wave are 
obtained. Only the local change of the momentum thickness is used to construct the 
new mean flow at the advanced streamwise interval. The detailed change in shape of 
the mean velocity profile over a long streamwise distance is not considered here since 
it depends on the accumulated effect of the incoherent Reynolds stress. This effect, 
however, is partially accounted for by using a self-similar mean velocity profile, in 
accordance with previous experimental data (Oster & Wygnanski 1982; Gaster et al. 
1985). 

2.1. Governing equations 
The non-dimensional equation of motion describing the two-dimensional inviscid and 
incompressible mixing layer in Cartesian coordinates is given by 

where the stream function Y(x,y, t )  satisfies the relations 

Here U and V represent the streamwise and transverse components of the velocity 
vector, respectively, x is the streamwise coordinate and y is the transverse coordinate. 
Since the relevant scales are the local integral scale, 8, of the shear layer and the positive 
velocity difference between the upper and lower streams of the mixing layer, U,- U,, 
these quantities were used to render all variables dimensionless, i.e. 

All dimensional variables are denoted by the hat symbol while time-averaged (mean) 
quantities are denoted by the overbar. The integral lengthscale 0, which is often 
referred to as the momentum thickness, is given by 

and I: is the value of 9 where the mean velocity equals the convective velocity 
u, = gu,+ U J .  
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Assuming that the mean flow is perturbed by a disturbance of O(e) (e  < l), one may 
attempt to find a power-series solution to the stream function satisfying (1). Around 
an arbitrary streamwise position x,,, the mean flow is assumed to be quasi-parallel and 
the power-series expansion is given by 

U'(x,y, t)  = Yd(y)+eY1(x,y, t )+s2Y2(x ,y , t )+-v  ( 5 )  

where Yo(y)  = p(x,,, y) .  Since to leading order the mean flow is assumed to be parallel, 
the coefficients in the linearized set of equations at O(e) depend only on y and the 
equations admit solutions which depend on x and t exponentially. Therefore, solutions 
of the form 

(6) 

which represent two-dimensional travelling waves, are considered. Here the asterisk 
denotes complex conjugation and 01 is a complex eigenvalue (a = a, + iaJ, of which the 
real part is the non-dimensional wavenumber while the imaginary part represents the 
rate of amplification. The non-dimensional frequency p is real since the analysis is 
limited to spatially amplifying waves. 

y - q, ( ),iCaz-fl)+@*( )e-i(=*z-/jt) +, +@T, 1 -  1 Y  1 Y  

Substitution of ( 5 )  into (1) yields to O(e) 

where U, = d!Po/dy and U t  = d3Yo/dy3. Here prime denotes differentiation with 
respect to y .  Further, by substituting (6) into (7) one obtains the well-known Rayleigh 
equation, 

where c = P/a. 
Selecting terms of O ( 2 )  yields 

where RS = RSH+ RSM. (10) 

The linear operator P is defined in (7) and - RS represents the interaction of a wave 
with itself. Such an interaction results in the generation of the second harmonic via the 
term $: which is denoted by RSH, and a contribution to the mean flow via the cross- 
product ykl $;, denoted by RSM. 

As shown in Appendix A, RSM can be cast in the form 

where 

and 

R S M  = - 201, e-2uix - + 401; T , {; I 

(13) 

For future reference note that 7,  which represents the ratio between the coherent shear 
stress and the growth rate of the wavy disturbance, is of 0(1), even in the limit 
lai\ + 0 (see Appendix B). 
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2.2. The streamwise variation of the local mean $ow 

From ( 5 )  and (6) it follows that the mean flow Y(x,y), consists of a parallel flow Yo(y)  
and a small modification c 2 Y z ( x , y )  (the mean part of c 2 Y 2 ( x , y ,  t)) ,  induced by the 
unsteady periodic perturbation. Since (9) is linear, in order to determine Yz(x,y) we 
solve the equation including only the mean part of the right-hand side, RSM, i.e. 

The solution Y, can be decomposed into 

Y, = Ul,,m + Vl,, (1 5 )  

where Y,,, and Ym are the homogeneous and particular solutions of (M), respectively. 
From the right-hand side of (14), it is evident that Yz depends on y and the streamwise 
lengthscale 

x1 = lailx, (16) 

and has the form (17) 

together with the boundary condition 

Fz = Y h o m ( X 1 ,  Y )  + e-2ai” @,(Y), 

(18) 

Substituting (17) into (14) and keeping only those terms at most linear in ai, we obtain 

(19) 

a -  
-Yz(x,+-co,y) = 0. 
3x1 

a 
- (uo K o r n ( x 1 ,  Y )  - %’ phom(x1 ,  Y ) )  = 0, 
ax, 

(20) 

The streamwise-dependent solution of (19) and the solution of (20) are determined 

3F u @If -U“@ =--. 
aY 

O m  O m  and 

by the method of variation of parameters. Thus 

with 
d d 

-g , (x ,  +. - co) = -gz (x ,  + - co) = 0, 
dx1 dx1 

where 

In order to evaluate the unknown constants D,  and D,, and the unknown functions 
g,(x,) and g,(x,), we follow the matching procedure used by Goldstein & Leib (1988). 
Thus, we shall match the outer expansion of the inner mixing layer solution Y2 with 
the inner expansion of the outer potential flow solution Pp. 

On one hand, away from the mixing layer ( y  9 l), the potential flow is a function 



86 J.  Cohen, B. Marasli and V. Levinski 

of two long scales, x1 = ]ail x and y1 = jail y ,  and its asymptotic expansion for y1 + 1 
is given by 

where the subscripts + and - refer respectively, to the regions y > 0 and y < 0. 
Consequently the asymptotic forms of the potential velocities are given by 

and 

On the other hand, the streamwise-dependent asymptotic mixing layer solution for 
the streamwise velocity as y + f co is given by 

which can also be written as 

+ dii; du; uo - = u--+O( a;). 
dx, O dx, 

It should be noted that the same relation can be obtained directly by integrating the 
mean part of (9) across the mixing layer. 

Comparison of (26) with (28) shows that 

g,(x,>, D, - O(la, Y,'(x,, 0)l). (30) 
Similarly, the asymptotic expansion of the vertical velocity u, is given by 

and matching with (27) shows that 

g,(x,) ,  Dl - O(l Y;(xl> 0)l). 

Since the streamwise derivatives of up and D~ are harmonic conjugate functions, their 
boundary values are related by the Hilbert transforms 

where the bar indicates that the Cauchy principal value is to be taken. 
Provided that u$(x,,  0) and v;(x,, 0) are replaced by the asymptotic expansions of 

the inner variables U: and a: respectively, one can get the following relation from (33):  

) d21 . (34) 
dv: dc- du, 

U,+-(x,)+ u;>(x1) = Ui--(Z1) u; ~ dx1 dx1 dx', 2, - X1 

Substitution of (29) into (34) yields 
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and by using (31) one obtains 

d2g, -(XI) = 0 
dxf 

and U;'[D, + G(m)] + UiZ[D,  + G( - a)] = 0. 

The boundary conditions (! 8) and (22) together with (36) imply that 

Using the definition U ,  = U,' and U, = U;, the constant D, is determined to be 

G(w) U," + G( - W )  
D, = - u,z+ u,z 

87 

(36) 

(37) 

(39) 

Substituting (21) and (23) into the streamwise derivative of (17), and using (30), (32) 
and (38), the streamwise variation of the local mean velocity is obtained as 

2.3. The spatial development of the mean flow and the disturbances 
From ( 5 )  and (40) it follows that the streamwise variation of the mean flow is of 
0(1c2a,l). Therefore, for any streamwise interval Ax 4 1/1e2cc,I, the functions U,, Q17 Qrn 
and their derivatives are assumed to depend only on the y-coordinate, while the 
eigenvalues CL and c are assumed to be constant. 

For the numerical computation the downstream distance is divided into small equal 
increments denoted by xi, j = 0,1,2, . . . . The disturbance at a given streamwise 
location within the interval {x,, xi+,} has the form 

eYl(x, y ,  t )  = A(x)  y )  eie(%, t ,  + A*(x) @:(xi, y )  e-ie(z't), (41) 

where the amplitude and phase are given by A(x)  = A(xi) exp [ - a,(x - xj)] and 
@(x, t )  = @(xi, t )  + a,(x- xi), respectively. 

In the present analysis the mean velocity profile is assumed to be self-similar, with 
the x-axis ( y  = 0) defining the position at which the mean velocity has the value U,. 
Within any given interval {xj,xi+J, U,, is taken to be independent of x and its profile 
in the y-direction is a function only of y/B(xj). Therefore, in order to advance to the 
next downstream location the streamwise variation of the momentum thickness 
has to be calculated. Using the expression for the streamwise variation of the mean 
velocity (40) and the definition (4), the change in B is given by 

B(x~+,)-~(x,) = -2a,A(xj)A*(xj)Ax @;(X., ) 1-2 U,(xj,y)-- u1 
u2 - Ul 

(42) 
"rm [ ( 

where Ax = xi+,-xj and U,(x,,y) is the self-similar velocity profile at xi. The 
amplitude and phase of the wave at the advanced streamwise location are given by 

(43) 
dA(x.) 

dx 
A(x~+,) = A ( x , ) + A A x  = A(x,)(l -cL,Ax), 
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and O ( X ~ + ~ ,  t )  = O(xj, t )  + a,(xj) AX. (44) 

For a given initial value of the momentum thickness, the self-similar mean velocity 
profile is determined, and the linearized equation (8) for the periodic disturbance is 
solved. Then, for a given initial disturbance amplitude, the streamwise variation of the 
mean velocity is obtained from (40), whereby the momentum thickness at the advanced 
streamwise position is calculated from (42). The disturbance amplitude at the next 
downstream position is calculated using (43). This procedure is repeated at each one 
of the streamwise positions, until the neutral point is reached. 

3. Comparison with experimental data 

In this section, the theoretical computations are compared to experimental data, which 
were obtained at the two-dimensional mixing-layer facility at Tel-Aviv University 
with the extensive cooperation of I. Weisbrot. For the details of the facility and 
experimental procedures the reader is referred to Oster & Wygnanski (1982) and 
Weisbrot & Wygnanski (1988). The higher-stream velocity, U,, was kept at 10 m s-* 
while the lower-stream belocity, U,, was varied to produce two velocity ratios of 
R = U J U ,  = 0.2 and 0.6. At a given downstream position, two mean velocity profiles 
were measured : first without any artificial disturbance, and second with the mixing 
layer subjected to a periodic disturbance having a dimensional frequency 5. The 
normalized difference between the two experimental mean profiles represents 
qualitatively the modification of the streamwise mean velocity @A(y)  (see (40>), 
induced by the unsteady excited wave. 

Two sets of data, which were obtained at two different downstream locations 
corresponding to a single local Strouhal number (F,O/(U, + U,)) of 0.02 and to 
R = 0.2, are presented in figure l(a) together with their respective unforced mean 
velocity profiles. The frequencies of the excited disturbances in the two locations were 
60 and 42 Hz while the corresponding momentum thicknesses were 4.01 and 5.72 mm. 
The fact that both sets follow the same curve demonstrates that the local Strouhal 
number is the single important parameter for a given velocity ratio. The modification 
of the mean profile is asymmetric, with the lower-velocity side broader than the higher- 
velocity side. 

Similar experimental results for R = 0.6 and two different values of the Strouhal 
number are shown in figure 1 (b, c). In contrast to the R = 0.2 data, the modification 
of the mean flow is close to an antisymmetric shape, modifying the higher- and lower- 
velocity sides of the mixing layer by nearly equal amounts. 

The theoretical modification of the mean flow, computed from (40), is presented in 
figure 1 (d-f), corresponding to the experimental result presented in figure 1 (u-c), 
respectively. The mean velocity profile used in the calculations (see Gaster et al. 1985) 
is given by 

3.1. The local rnodijication of the mean velocity proJile 

UO(d -___ u1 - - 0.5[ 1 + (1 + C, sech’ (7)) tanh (7)], (45) u2 - Ul 
where 7 = C,y. The constant C, is related to C, by the definition of the quasi-two- 
dimensional momentum thickness and is given by 

(46) c =l-LC -LC2 

In the calculations that follow, C,  is chosen to be either 0 or 0.67, corresponding to the 
classical ‘tanh’ profile and the improved profile suggested by Gaster et al. (1985), 

2 2 3 1 15 1 ’  
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FIGURE 1. Experimental normalized mean velocity profiles (open symbols), corresponding wave- 
induced mean profile modifications (filled symbols) and comparison with theory: (a) U, = 2 m s-l, 
U, = 10 m s-l, St, = 0.02; A, F f  = 60 Hz, 2 = 150 cm, 0 = 4.01 mm; m, l$ = 42 Hz, P = 200 cm, 
B = 5.71 mm; (b) U,  = 6 m s-l, U ,  = 10 m s-l, St,  = 0.0125, F f  = 42 Hz, P = 300 cm, B = 4.76 mm; 
(c) U ,  = 6 m s-l, U ,  = 10 m ssl, St, = 0.0077, F f  = 42 Hz, B = 150 cm, B = 2.92 mm; (d )  theoretical 
counterpart of (a); (e )  theoretical counterpart of (b)  ; cf) theoretical counterpart of (c). 

respectively. For the results presented in figure 1 the analytical expressions, given by 
(45) with C, = 0.67, was used to represent the unforced mean profile in the 
computation; the corresponding computational results for C, = 0 are similar. 

For all three data sets the qualitative agreement between the measurements and the 
theory is good. In particular, the broadening of the higher-velocity side of the mixing 
layer, as the velocity ratio is increased and the Strouhal number is decreased, is well 
captured by the computations. However, the experimental distributions are sub- 
stantially broader than the corresponding theoretical predictions. This is partially 
attributed to the fact that while the experimental modification of the mean flow shown 
in figure 1 is a result of a cumulative effect integrated over the entire upstream distance, 
the theoretical modification represents only the local change of the velocity profile. 
Therefore, at this stage only a qualitative comparison is presented. 

3.2. The spatial development of the mean flow and the disturbances 
The variation of the momentum thickness with downstream distance (obtained by 
Oster & Wygnanski 1982) is shown in figure 2. The influence of the forcing frequency 
on the spreading rate of the two-dimensional turbulent shear layer is demonstrated in 
figure 2(a) ,  while the effects of the velocity ratio R are shown in figure 2(b). Since for 
a given velocity ratio R = U,/U, the model suggests that the important parameter in 
the problem is the local Strouhal number (via the linear problem), when these results 
are scaled properly, all the data points indeed collapse around the dashed curve which 
represents the theoretical results (figure 2 c). In these calculations the mean velocity 
profile was assumed to fit the formula given by (45) with C, = 0. A similar curve 
corresponding to C, = 0.67 is shown by the solid line. The ordinate in figure 2(c) is the 
local Strouhal number and the abscissa is a measure of the downstream distance in 
terms of wavelengths (shifted by a distance x,). Marasli et al. (1992) obtained similar 
results in a plane turbulent wake. The inclusion of the velocity ratio in the abscissa is 
an outcome of the study done by Monkewitz & Huerre (1982) and the numerical 
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FIGURE 2.  Momentum thickness data for forced mixing layers: (a) R = 0.6; --, unforced; A, 
F,=30; 0, 40; A, 50; 

Experimental data from Oster & Wygnanski (1982). 

+, 6 0 H ~ ;  (b) F , =  50Hz; ., R = 0 . 3 ;  I3, 0.4; 0, 0.5; X ,  0.6; 
(c) non-dimensional data compared with theoretical calculations : -, C = 0.67; ----, C, = 0. 

simulations of Riley & Metcalfe (1980). During the downstream integration, all 
dimensional variables were made dimensionless using the initial momentum thickness 
and the velocity difference across the shear layer as constant reference scales. 

As can be seen from figure 2 the theoretical prediction depends on the self-similar 
profile, in particular the choice of C, in (45). An apriori choice of the self-similar profile 
is difficult since it depends on the interaction between the incoherent fluctuations and 
the instability wave and other factors which are not addressed in this paper. However, 
if the Strouhal number at the plateau region (region 11) is matched to the neutral 
Strouhal number computed for a particular mean velocity profile and a given 
excitation frequency, the prediction of the streamwise evolution of the shear-layer 
thickness is good. The good agreement between the experimental data and the 
theoretical computation (for C, = 0) indicates that indeed the coupling between the 
mean field and the periodic excited disturbance controls the spreading of the shear 
layer. As long as the amplitude of the perturbations is small, the associated spatial 
developments are identical up to a translational shift, x,,. In other words, before the 
nonlinear coupling becomes significant, the distance where the disturbance is amplified 
with a constant exponent is longer for a disturbance having a lower initial amplitude 
and vice versa. 

The momentum thickness initially grows almost linearly with x and then, when the 
local Strouhal number exceeds the neutral value, a parallel region (constant 0) is 
generated. The length of the plateau is determined by the amplitude level of the lower- 
frequency disturbances relative to the forced wave amplitude. 

Next, the predicted development of both the momentum thickness and the 
disturbance amplitude is compared with the experimental results obtained by Gaster 
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FIGURE 3. (a) Streamwise variation of the momentum thickness; (b) normalized amplitude of the 
induced wave. A, data of Gaster et al. (1985); -, theoretical calculation with C, = 0.67; ----, 
with C, = 0. 

et al. (1985). In figure 3(a) the streamwise variation of the momentum thickness is 
shown, while in figure 3 (b) the corresponding variation of the normalized integral 
amplitude, j" lz2ldy (the tilde denotes the coherent part), of the excited wave is 
depicted. Themsymbols correspond to the experimental data points, while the solid 
and dashed lines represent the theoretical results, where the disturbance amplitude 
Ju"l = lu,(x,y)J = 2JA(x)@;(x,y)J.  The dashed and solid lines correspond to theoretical 
solutions using the self-similar profile given by (45) with C, = 0 and 0.67, respectively. 
The agreement between the experimental results and the theoretical calculation based 
on the improved self-similar profile (C, = 0.671 is much better. As was indicated by 
Gaster et al., this profile provided a better fit to the data than the regular ' tanh' profile. 
It should be noted that in the present calculations only the initial momentum thickness 
was known from the experiments. However, since the associated spatial development 
is identical up to a translational shift (see the discussion with respect to figure 2), the 
initial amplitude was chosen so that its initial slope of growth best fitted the 
experimental results. 

A similar comparison with the experimental data obtained by Weisbrot & Wygnanski 
(1988) is shown in figure 4, where the downstream variation of the amplitude of the 
lateral component of the velocity perturbation, 161, is included as well. Note that only 
the initial 8 and ii amplitudes from the theory and the experiments are matched, while 
u" is calculated. The prediction based on the improved self-similar profile underestimates 
the data for 6' and 6, while the prediction based on the regular 'tanh' profile 
overestimates the data for 8, ii and 6. 
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FIGURE 4. Streamwise variation of (a) the momentum thickness, and normalized amplitude of the 
induced wave; (b)  the streamwise component; (c) the cross-stream component. A, data of Weisbrot 
& Wygnanski (1988); -, theoretical calculation with C, = 0.67; ----, with C, = 0. 

4. Conclusions 
The modification of the mean flow in turbulent mixing layers caused by instability 

waves is predicted by an inviscid nonlinear spatial theory, provided the amplification 
rates are small. Furthermore, the spatial evolution of both the disturbance amplitude 
and the width of the shear layer can be predicted by a simple quasi-parallel model. It 
is demonstrated that the local Strouhal number, representing the ratio between the 
shear-layer thickness and the streamwise wavelength of the disturbance, is the 
important parameter controlling the evolution of the mixing layer for a given initial 
disturbance amplitude. Since in the initial region where the wave is amplified the 
coherent Reynolds stresses dominate the flow, the analysis, which assumes a self- 
similar mean velocity profile, is successful in predicting the downstream evolution of 
turbulent mixing layers subjected to external excitations. 

The authors wish to thank I. Wygnanski for many stimulating discussions and I. 
Weisbrot for his extensive cooperation in acquiring some of the experimental mixing- 
layer data. 

Appendix A 
The right-hand side of (9) in 52.1 is given by 
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The expressions for the streamwise and transverse velocities to order O(E) are 

u1 = a q / a y  = ei@ + e+@, 

o, = - au,/ax = - iaQl eiO + ia*@: eci@*, and 

respectively, where 0 = ax-pt. 

Using the continuity equation, (A 1) can be cast in the form 

The time-average of (A 5) is given by 

Thus, 

Using the Rayleigh equation it can be shown that 

and finally the expression for RSM is given by 

Appendix B 
From (A 11) in Appendix A, it is clear that away from the critical layer 2ai a7/ay E 

O(ai). In the critical layer, the first two terms on the right-hand side of (A 11) are of 
O(1). Therefore, we concentrate on the last term on the right-hand side of (A 11). 
Integrating this term across the critical layer we obtain : 

where r, is the y position at which Uo = cr, and d is a distance much greater than the 
critical-layer thickness, which is proportional to ci, such that 

Then, using the Taylor series expansion around we obtain 

(B 3) 
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For the hyperbolic tangent profile used in the paper it can be shown that 

J.  Cohen, B. Marasli and V. Levinski 

u:( r,) = O(c, - UO( q), 
u:( U / C i  = 0 ([c, - UO( Q l l C t )  

(B 4) 

(B 5 )  and 

which was shown by Robinson (1974) to be of O(1). 
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